The Cartan-Dieudonné Theorem Per Vognsen

Theorem 1. If **A** is in **SO**(*n*) then there are A_1, \ldots, A_n in **O**(*n*) such that $A = A_1 \cdots A_n$. In other words, any rotation of *n*-dimensional space can be written as a composition of at most *n* reflections.

Proof. Let Fixed(A) be the sum of the dimensions of the subspaces fixed pointwise by A. That is, if S_1, \ldots, S_m are the subspaces of \mathbb{R}^n fixed pointwise by A then

$$\operatorname{Fixed}(\mathbf{A}) = \sum_{i=1}^{m} \operatorname{Dim}(S_i).$$

Let $k = n - \text{Fixed}(\mathbf{A})$. The integer k can be viewed as a total of all the subspaces not fixed by **A**. The proof proceeds by induction on k. For the basis case, we have k = 0 and thus $\text{Fixed}(\mathbf{A}) = n$. This means that **A** must fix all of \mathbb{R}^n and so **A** must be the identity matrix. Thus we can choose $\mathbf{A_1} = \cdots = \mathbf{A_n} = \mathbf{I}$.

For the inductive step, suppose that k > 0 so that we have $\text{Fixed}(\mathbf{A}) < n$. This last inequality implies that we can find some \vec{x} in \mathbb{R}^n that is not fixed by \mathbf{A} . Set $\vec{y} = \mathbf{A}\vec{x}$ and let \mathbf{R} be the $n \times n$ matrix representing the reflection in the hyperplane with normal vector $\vec{u} = \vec{x} - \vec{y}$. Since \vec{x} is not fixed by \mathbf{A} , the normal vector \vec{u} is nonzero. The reflection matrix \mathbf{R} interchanges the two vectors \vec{x} and \vec{y} , so we have $\mathbf{R}\mathbf{A}\vec{x} = \mathbf{R}\vec{y} = \vec{x}$. Thus $\mathbf{R}\mathbf{A}$ fixes \vec{x} . It is easy to see that $\mathbf{R}\mathbf{A}$ fixes the entire subspace S spanned by \vec{x} by appealing to linearity.

Since **R** fixes pointwise the hyperplane orthogonal to \vec{u} , we have $\mathbf{RA}\vec{z} = \mathbf{A}\vec{z}$ for every \vec{z} not in S. So **RA** behaves exactly like **A** except that it fixes the onedimensional subspace S. We thus have $\operatorname{Fixed}(\mathbf{RA}) = \operatorname{Fixed}(\mathbf{A}) + 1$ and therefore $n - \operatorname{Fixed}(\mathbf{RA}) = n - \operatorname{Fixed}(\mathbf{A}) - 1 < n - \operatorname{Fixed}(\mathbf{A})$. By induction, we can find matrices $\mathbf{A}_1, \ldots, \mathbf{A}_{n-1}$ in $\mathbf{O}(n)$ such that $\mathbf{RA} = \mathbf{A}_1 \cdots \mathbf{A}_{n-1}$. Multiplying both sides on the left by **R** and noting that $\mathbf{R}^2 = \mathbf{I}$, we see that $\mathbf{A} = \mathbf{RA}_1 \cdots \mathbf{A}_{n-1}$. Each of the *n* factors on the right-hand side are elements of $\mathbf{O}(n)$ and so they provide the needed factorization of **A**.